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ABSTRACT 
An adaptive mesh refinement (AMR) 
version of CTH is currently under 
development.  This project is being 
conducted jointly by researchers at the 
University of Texas and at Sandia 
National Laboratories.  The AMR version 
of CTH represents a significant milestone 
in the ten-year development of this legacy 
code. 
 
CTH is a multi-material wave propagation 
code used by many analysts in the DoD 
user community to simulate large 
deformations, large strain rates, and strong 
shocks in solid, liquids and gases.  The 
numerical procedure is based on a finite 
volume formulation of very general forms 
of the continuum equations.  As such, it 
can be applied to a wide variety of 
problems.  The computational mesh used 
in CTH is Eulerian; materials and material 
interfaces are permitted to flow through 
the mesh as the calculation proceeds. 
 
The incorporation of new algorithms into 
the AMR version of CTH is described.  A 
block refinement algorithm that preserves 
the location of material interfaces has been 
implemented into a working version of the 
code.  This algorithm uses advanced 
interface tracking to map materials; this 
minimizes the dispersion normally 
associated with the process.  A multi-
material advection algorithm, which is 
basically a generalization of Youngs’ 

interface reconstruction method to cells 
with mismatched faces, is described.  
Results from three-dimensional examples 
problems are shown that effectively 
illustrates the improvements afforded by 
these new algorithms. 
 
ADAPTIVE STRATEGY 
When implementing adaptive refinement 
into an existing code, it is very important 
to consider the organization and data 
structure of the target application code.  
Here, the application code is CTH 
(McGlaun et al. 1990), a three-
dimensional multi-material Eulerian wave 
propagation code designed for modeling 
very large deformations and strong shocks.  
The data in CTH is organized in (I,J,K) 
logical blocks that correspond to the mesh 
used in the problem.  Within a block, the 
mesh contours are constrained to remain 
parallel with the coordinate axes, and the 
introduction of hanging, or constrained, 
nodes is not permitted.  However, adjacent 
blocks are permitted to have different 
values of I, J and K.  Thus, a reasonable 
approach for the implementation of 
adaptivity, which preserves the original 
data structure used in CTH, is to limit 
refinement/unrefinement to the block 
level.  Furthermore, in order to simplify 
the algorithms for communication between 
blocks, the refinement/unrefinement was 
limited to isotropic 2:1 ratios between 
adjacent blocks.  This process is illustrated 
in Fig. 1, where a set of communicating 



blocks is shown.  The contents of the ghost 
cells along the periphery of the blocks are 
provided by information coming from 
adjacent blocks.  Since these adjacent 
blocks may be at a different resolution, 
calculating the contents of the ghost cells 
may involve a cell split/combine process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Block-adaptive strategy applied to target 
application code. 

 
A significant part of this effort was to 
establish the two-way communication 
between blocks, as well as to make the 
scheme work in parallel, which is the 
subject of another paper (Crawford 1999).  
The focus of this work is on the 
development of refinement schemes, as 
well as error indicators, suitable for 
implementation into a three-dimensional 
Eulerian shock physics code.  
 
REFINEMENT/UNREFINEMENT 
The collapse of 8 child cells (in three 
dimensions) into a single parent cell is a 
simple process, which for brevity will not 
be completely described here.  For 
example, intensive quantities (such as 
specific internal energy) in the parent cell 
are mass averages of the intensive 
quantities in the child cells, masses and 
volumes are simply sums of the values 

from the child cells, and material volume 
fractions are volume averages from the 
child cells. 
 
The refinement process, on the other hand, 
requires a parent cell to be split into 8 
child cells.  This process is complicated by 
the fact that material interfaces exist 
within the cell; thus the location of these 
interfaces must be preserved when the 
refinement is done. To accomplish this, it 
is useful to review the algorithms used for 
interface tracking in CTH. 
 
Review of Interface Tracking  
In CTH, the location of material interfaces 
within a cell is interpreted using Youngs’ 
algorithm (Youngs 1987).  Youngs’ 
algorithm is basically a systematic 
procedure for determining the position and 
orientation of the interface plane 
separating two materials in a 
computational cell, given the volume 
fractions of materials in the cell as well as 
the surrounding cells. 
 
The basic procedure used in Youngs’ 
algorithm is to determine the outward unit 
normal vector n and the perpendicular 
distance d from the interface plane to a 
reference corner.  These two quantities 
uniquely determine the position and 
orientation of the interface plane.  The 
normal n is determined readily from the 
volume fractions as 
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where φ is the volume fraction of the 
material of interest.  Likewise, d is 
determined based on its value from one of 
five possible intersection conditions, given 
in Fig. 2.  These include the triangle 



section, two quadrilateral sections, a 
pentagonal section, and a hexagonal 
section.  Formulas for d in each of these 
configurations, as well as the values for n 
and φ where each of these is applicable, 
can be found elsewhere (Youngs 1987). 
 
 

 
 
Figure 2.  Possible intersection conditions for a plane 

intersecting a unit cube: (a) triangle section, (b) 
quadrilateral section A, (c) pentagonal section, (d) 
hexagonal section, and (e) quadrilateral section B. 

 
Extension to Cell Refinement 
Youngs’ algorithm can also be extended to 
insure a consistent interface mapping for 
cell refinement.  Once n and d for a parent 
cell are known, values for n and d can be 
recovered for the eight child cells in a 
manner that preserves the interface 

mapping of the original parent cell.  For 
example, consider the refinement of a 
parent cell into 8 child cells as is depicted 
in Fig. 3.  The unit normal vector 
 

5 

7
8

 
 

Figure 3.  Schematic of refinement of a parent cell 
into eight equal volume child cells. 

 
n is the same for the eight children as it is 
for the parent.  The values for d, on the 
other hand, are given by 
 

 
 
where di denotes the value of d for the 
child cells depicted in Fig. 3.  Note that the 
formulas for di given in Eq. (2) are values 
corresponding to a unit cell. 
 
Once the values for n and di in each of the 
child cells are known, a procedure can be 
followed for determining the volume 
fractions for materials in each of the 
children.  The number of intersection 
conditions that must be considered again 
reduces to the five possibilities given in 
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Fig. 2.  Formulas for φ in each of these 
configurations, as well as ranges for n and 
di where each of these is applicable, can be 
found elsewhere (Littlefield and Oden 
1999). 
 
BLOCK-ADAPTIVE MULTI-
MATERIAL ADVECTION 
The location of material interfaces within 
a cell also has an effect on the advection of 
mass, momentum and energy to adjacent 
cells.  As such, in incorporating a block-
adaptive scheme, it is important to 
consider the details of material interfaces 
on the advection between blocks of 
different mesh resolutions. 

 
Figure 4.  Illustration of multi-material advection. 

 
Review of Multi-Material Advection 
In order to understand the procedure for 
implementation of block-adaptive multi-
material advection, it is instructive to 
review the standard multi-material 
algorithm in CTH.  A second-order 

algorithm is used to advect variables 
between adjacent cells.  Central to the 
algorithm is a determination of the volume 
fractions of materials in the advection 
volume.  A variant of Youngs’ algorithm 
is used for this purpose. 
 
Consider advection occurring to the right 
from a unit cube, as is illustrated in Fig. 4.  
The total advection volume is denoted as 
ε.  The material advection volume is the 
volume enclosed by the intersection of the 
interface plane with the total advection 
volume.  Youngs’ original method outlines 
an extensive set of formulas needed to 
determine the volume fraction of the 
material enclosed in the total advection 
volume.  However, a much simpler 
method is to simply re-normalize the 
values for n and d for the interface plane 
with respect to the total advection volume.  
This technique is used in a number of 
Eulerian hydrocodes (including CTH), but 
to the author’s knowledge has never been 
published in the open literature.  For 
example, for advection occurring in the +2 
direction, the proper normalizations are: 
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that the value for ñ for the material 
interface in the advection volume is   the 
same value as for the cell volume, but the 
value for d is translated so that it is 
applicable to the interface in the total 
advection volume, not the cell volume.  
Here, it is understood that a negative value 
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volumes, as shown in Fig. 5.  The 
normalization given in Eq. (3) determines 
the values for n and d in the advection 
volume.  A second normalization 
determines the values for n and d in the 
four high-resolution cells.  For example, 
for advection in the +2 direction the 
components of the unit normal become: 
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where – denotes components in the high-
resolution cells.  These normals are the 
same for each of the four cells.  Likewise, 
the values for d become: 
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ε  
where di denotes the value of d for each of 
the high-resolution advection volumes 
depicted in Fig. 5. Note that a negative 
value for any of the di's implies that this 
interface does not intersect the cell. 
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 1 
With the values for n and d known, the 
material volume fractions for each of the 
high-resolution advection volumes are 
determined using the same formulas for 
cell refinement referred to previously 
(Littlefield and Oden, 1999).   
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ERROR ESTIMATION 
A novel formulation for estimates of the 
error in the calculation, based on estimates 
of cell residuals, was developed as a 
means for triggering refinement and 
unrefinement.  This formulation has been 
presented elsewhere (Littlefield and Oden 
1999), and for brevity will not be repeated 
here. 
 
PROGRESS AND CALCULATIONS 
Integration of the algorithms described 
herein is work still in progress; the high-
resolution refinement algorithm has been 
implemented into CTH, but the advection 
algorithm is not yet complete.  Further, the 
residual error estimates for triggering 
refinement/unrefinement have not yet been 
implemented.  Nevertheless, even without 
these algorithms, preliminary results are 
promising and effectively illustrate the 
benefits of adaptivity to these types of 
computations. 
 
Figs. 6 – 8 show a sequence of images 
from a typical simulation.  In this 
calculation, an aluminum sphere impacts 
an aluminum plate at 5 km/s.  The initial 
velocity vector subtends an angle of 45° 
with respect to the normal of the plate, and 
the ratio of the sphere diameter to the plate 
thickness is 1.5.  The initial impact 
configuration is shown in Fig. 6, where 
materials and mesh blocks are shown 
(each block represents a 12x12x12 
uniform mesh in the calculation).  By 2.6 
µs, Fig. 7 shows that the sphere and the 
plate are severely deformed and bulged 
from the impact.  Block refinement in the 
bulged region behind the plate is apparent.  
Fig. 8 shows fragments of the plate and 
sphere propagating across the mesh; block 
refinement in the regions containing these 
fragments is evident. 
 

 
 

Figure 6.  Impact of an aluminum sphere on an 
aluminum plate - initial impact geometry. 

 

 
 

Figure 7.  Impact of an aluminum sphere on an 
aluminum plate – 2.6 µs after impact. 

 
 

Figure 8.  Impact of an aluminum sphere on an 
aluminum plate – 5.9 µs after impact. 

 
CONCLUSIONS 
A selection of algorithms necessary for 
integration of block-adaptive mesh 
refinement in an Eulerian impact 
mechanics code is described. Complete 
integration of these algorithms is in 
progress.  Preliminary results demonstrate 



that adaptive mesh refinement can 
significantly improve the computational 
efficiency of this class of simulations.  The 
implications for high-performance 
computing applications are profound: 
since these problems typically push the 
memory and CPU limits of any computing 
platform, improvements in computational 
efficiency with adaptive mesh refinement 
increases the size and/or decreases the 
resources required for simulation. 
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